
See corresponding editorial on page 772.

Maternal BMI is positively associated with human milk fat:
a systematic review and meta-regression analysis

Allison I Daniel,1,2,3 Sara Shama,2,3 Samantha Ismail,2,3 Celine Bourdon,2,4 Alex Kiss,5 Martha Mwangome,4,6

Robert HJ Bandsma,1,2,3,4,7 and Deborah L O’Connor2,3

1Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada; 2Translational Medicine Program, Hospital for Sick Children, Toronto,
Ontario, Canada; 3Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; 4The Childhood Acute
Illness & Nutrition Network (CHAIN), Nairobi, Kenya; 5Department of Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, Ontario,
Canada; 6Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Program, Kilifi, Kenya; and 7Department of Biomedical Sciences, College of
Medicine, University of Malawi, Blantyre, Malawi

ABSTRACT
Background: Lack of robust estimates of human-milk nutrient
composition and influential maternal factors, such as body
composition, are barriers to informing nutrition policies and
programs.
Objective: The objective was to understand the relation between
maternal BMI and human-milk energy, fat, and/or total protein.
Methods: Four electronic databases (MEDLINE, Embase,
CINAHL, and Web of Science) were searched. Outcomes assessed
were human-milk energy (kcal/L), fat (g/L), and total protein (g/L)
from mothers 1 to 6 mo postpartum. Studies with data on maternal
BMI or weight and height that quantified human-milk energy, fat,
or protein between 1 and 6 mo postpartum were eligible. Random-
effects meta-regression weighted by the inverse of the study-level SE
was completed for each of the 3 outcomes. The certainty of evidence
for each outcome was assessed using the GRADE (Grading of
Recommendations Assessment, Development, and Evaluation)
approach.
Results: A total of 11,373 titles and abstracts were identified, and
after full-text screening, 69 articles of 66 studies were included.
Meta-regression results showed a positive association between
maternal BMI and human-milk fat (β: 0.56 g/L; 95% CI: 0.034, 1.1;
P = 0.04; I2 = 93.7%, n = 63 datapoints). There was no significant
association between maternal BMI and human-milk energy (β:
3.9 kcal/L; 95% CI: −1.6, 9.5; P = 0.16, I2 = 93.3%, n = 40
datapoints) or total protein (β: 0.13 g/L; 95% CI: −0.16, 0.41; P =
0.37, I2 = 99.1%, n = 40 datapoints). The certainty of evidence for
human-milk energy was low and the certainty of evidence for fat
and total protein was very low.
Conclusions: Meta-regression analysis of available literature
suggested an association between maternal BMI and human-milk fat

between 1 and 6 mo postpartum. Future studies are needed to
confirm the relation between maternal BMI; variation in human-
milk energy, fat, and protein content; and the implications for child
growth and development. This review is registered with International
Prospective Register of Systematic Reviews (PROSPERO 2018
CRD42018098808) at https://www.crd.york.ac.uk/prospero/. Am
J Clin Nutr 2021;113:1009–1022.

Keywords: meta-analysis, BMI, maternal nutritional status, breast
milk, breastmilk, macronutrient

Introduction
There are strongly supported benefits of breastfeeding, both

for mothers and for their infants, and thus exclusive breastfeeding
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is recommended for the first 6 mo of life (1, 2). For infants,
benefits include lower risk of morbidity and mortality as well
as improved neurodevelopment (1). Human milk is believed to
provide all required nutrients for healthy term infants up to 6
mo of age, with the exception of vitamin D (2, 3). However, the
concentration of individual nutrients may vary due to a number
of maternal factors including body composition (4, 5).

Bravi et al. (4) performed a systematic review and qualitative
assessment of the association between maternal diet and a range
of human-milk macronutrients and, from 32 studies (1977–
2014), concluded that evidence on this topic is both limited
and conflicting. Only studies of well-nourished women were
included in their review and associations between maternal body
composition and human-milk composition were not assessed. A
recent meta-analysis by Leghi et al. (6) found that mothers with
overweight or obesity have higher human milk fat compared
with normal-weight mothers (n = 6 studies). No significant
associations were observed with human-milk protein (n = 5
studies). Human-milk energy was not investigated in this review,
and underweight women and low- and middle-income countries
were not represented.

To our knowledge, there has never been a contemporary sys-
tematic review that has quantitively evaluated all available data in
the published literature on human-milk energy and macronutrient
composition in relation to maternal body size from underweight
to obese using BMI as a continuous variable. We reasoned that
meta-regression of datapoints from all available studies would
be a novel approach to accomplishing this goal. The lack of
robust data on the composition of human milk and factors that
influence it has recently been highlighted by several international
agencies and researchers (7). Data on milk composition and
associated health outcomes are required to facilitate evidence-
based nutrition and health programs and policies. Given that
a significant number of women of reproductive age globally
are underweight and the prevalence of overweight and obesity
continues to rise (8, 9), clarification of the degree to which
maternal body composition is related to human-milk energy and
macronutrient composition is required.

Therefore, the main question that this systematic review aimed
to answer was, “In mothers of infants 1 to 6 months of age,
is maternal body composition, as assessed by BMI, associated
with human-milk energy, fat, and/or total protein?” A secondary
aim was to examine the influence of quantification techniques
for the determination of human-milk energy, fat, and total
protein on these estimates. An additional aim was to explore
sources of heterogeneity in human-milk composition related
to breastfeeding practices, technique of human-milk collection,
prepregnancy or postpartum BMI, and income level of the
country where research was conducted.

Methods
A protocol for this systematic review was prospectively

registered on the International Prospective Register of Systematic
Reviews (PROSPERO 2018 CRD42018098808). The Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines were followed in the completion of this
systematic review (10).

Literature search and eligibility

The electronic databases MEDLINE, Embase, CINAHL, and
Web of Science were searched by a research librarian at the
Hospital for Sick Children on 4 July 2019 and the search was
updated on 19 May 2020 (Supplemental Tables 1 and 2). Search
terms related to maternal BMI and human-milk energy and
macronutrients. There were no restrictions (e.g., language) used
for the search apart from the restriction to human research studies.

Studies that included mothers of infants between 1 and 6 mo
of age were eligible for inclusion. This age range was selected
to ensure that the milk-composition analyses were conducted
on mature milk samples and not colostrum or transitional milk.
All studies where mothers provided any amount of human milk
were considered; in other words, mothers were not always
exclusively breastfeeding. Articles including preterm infants born
before 37 wk of gestation were to be considered in the review
but quantitatively analyzed separately from term-born infants.
Studies were excluded if authors did not provide data on maternal
BMI or weight and height, did not collect human milk, or did not
directly assess (i.e., quantify) human-milk energy, fat, or protein
concentration.

Study types that were eligible for inclusion were observational
studies and intervention trials; reviews, commentaries, and
abstracts of conference proceedings were excluded. Research
performed in low-, middle-, and high-income countries was
considered. Upon completion of the initial screening process, ref-
erences of eligible articles were examined to identify additional
publications that met the inclusion criteria for this systematic
review.

Maternal BMI and main outcomes

Maternal BMI (kg/m2) prepregnancy or during lactation
was examined as a continuous variable. BMI is a simple
and inexpensive proxy indicator of body composition, with a
BMI <18.5 representing underweight, a BMI of at least 25.0
representing overweight, and a BMI of at least 30.0 representing
obesity (11). The 3 primary outcomes of interest were human-
milk energy (kcal/L), fat (g/L), and total protein (g/L) from
mothers of infants between 1 and 6 mo postpartum. Based on
reviewer feedback during the peer review process, human-milk
lactose (g/L) was also evaluated in post hoc analyses. Total
protein reflects the total amount of nitrogen in a sample and
includes both protein and nonprotein nitrogen components in
human milk. If human-milk samples were collected at multiple
time points in a study, measures closest to 3 mo postpartum were
used. We considered all studies, regardless of the techniques (e.g.,
methods) used to quantitate energy, fat, and total protein; the
3 main outcomes were determined a priori for this systematic
review (Supplemental Table 3). Unlike with the dairy industry,
there is no national or international body that recommends
a specific technique for human-milk analysis. However, the
following methods are described by experts in the field as the
“gold standard” or “preferred” methodology: bomb calorimetry
(human-milk energy), gravimetric method (human-milk fat), and
nitrogen or amino acid analysis (human-milk total protein) (12–
15). As described below, in our secondary analyses, we examined
associations between maternal BMI and human-milk energy,
fat, and total protein using these preferred methods alone or in
combination with other commonly utilized techniques.
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FIGURE 1 Study flow diagram of included and excluded studies in this systematic review.

Study selection and data extraction

Using Covidence online software, articles were independently
screened in duplicate to determine eligibility by 2 of 3 reviewers
involved in this systematic review (AID, SS, and SI) (16). This
first step involved reviewing titles and abstracts followed by
full-text review. The third reviewer was involved in the case of
any discrepancies. Reasons for excluding full-text articles were
documented. Results from this screening process are summarized
in Figure 1 following the PRISMA guidelines (10).

A data-extraction sheet in Research Electronic Data Capture
(REDCap) was used separately by 2 of the reviewers and data
were subsequently combined (17). If any studies had missing
data on maternal BMI or human-milk energy, fat, or protein,
the authors were contacted for this information, although this
was required for only 1 study in the review (18). Data ex-
tracted were publication year; country and income classification

(low-, middle-, or high-income) according to the World
Bank Group (19); study design (experimental or observa-
tional); maternal age; maternal prepregnancy and/or postpartum
BMI; human-milk collection methods (exclusive breastfeeding,
complete breast expression, frequency of collection within a
24-h study period); human-milk energy, fat, and total protein
concentration; and the respective quantification techniques used
(20).

Data were pooled during the data-extraction process for studies
with multiple experimental groups or cohorts. However, for all
studies that examined human-milk composition separated by
BMI categories, these data were disaggregated and included
in the analysis as discrete datapoints. Units were converted to
kilocalories per liter for energy and to grams per liter for fat and
protein upon data extraction. Protein data that were presented as
nitrogen content were multiplied by a protein conversion factor of
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6.25 (21). All quantitative data, including ranges, IQRs, variance,
SEs, and CIs, were converted to SDs at this step of the review by
2 reviewers independently for each article.

Certainty of the evidence across studies

The Grading of Recommendations Assessment, Development,
and Evaluation (GRADE) approach was used to assess the
certainty or quality of the evidence across studies, rather than
for individual studies (20). This assessment was done for each
of the 3 outcomes examined by meta-regression—specifically,
human-milk energy, fat, and total protein, respectively. Evidence
started at moderate quality because of the observational nature
of this systematic review, and was downgraded based on the
following 4 GRADE criteria: 1) risk of bias of individual
studies included in the meta-regression (study design or execution
problems that could impact the outcome), 2) inconsistency
(unexplained statistical heterogeneity in meta-regression results),
3) indirectness (whether included studies assessed mothers across
the BMI continuum or human-milk quantification collection
methods and techniques employed, many of which were proxy
measures such as calculated energy for human-milk energy),
and 4) imprecision (wide CIs around the estimate of effect for
the meta-regression). An overall score for each outcome (high,
moderate, low, or very low) was determined by considering
certainty across all GRADE criteria.

Statistical analysis

All analyses were completed in Stata version 14 (StataCorp
LP) after data were exported from REDCap version 9.3.8 (Van-
derbilt University, Nashville, TN) (22). Random-effects meta-
regression using the metareg macro was performed to examine
the association between maternal BMI as a continuous predictor
of human-milk energy, fat, and total protein, respectively.

Again, individual studies were usually included as single data-
points in the meta-regression. For studies that also disaggregated
groups by BMI and reported on human-milk composition across
groups, results were included as separate datapoints in the meta-
regression. Means were weighted by the inverse of the study-
level SE for each of human-milk energy, fat, total protein, and
lactose. The meta-regression analyses were fitted using restricted
maximum likelihood. The residual variation due to between-
study variation (I2 residual) was computed (23). This type of
analysis assumes that the relations between variables in the
meta-regression are linear or follow a normal distribution. The
assumption of normality for each outcome was confirmed using
Q–Q plots (Supplemental Figures 1–4).

To address our second aim, additional meta-regression anal-
yses were performed with inclusion of only those studies
that used higher-quality human-milk quantification techniques
described by experts in the field as “gold standard” or “preferred”
methodology for human-milk energy (bomb calorimetry), fat
(gravimetric method), and total protein (nitrogen or amino
acid analysis). We also completed meta-regression with these
techniques in combination with other commonly used techniques
to quantitate human-milk fat and total protein. Further subgroup
analyses were conducted to explore potential reasons for hetero-
geneity around human-milk energy, fat, and total protein. These
subgroup analyses included exclusive breastfeeding (yes/no),

collection of a complete breast expression (yes/no), human milk
collected over 24 h (yes/no), BMI measured prepregnancy or
postpartum, income level of the country from which milk samples
were collected (low- and middle-income vs. high-income), and
observational or experimental study design. Separate meta-
regression analyses were completed for each respective subgroup
comparison and I2 values were assessed.

Results
The search of the 4 electronic databases and reference lists

of included studies identified 11,373 abstracts after duplicates
were removed (Figure 1). After title and abstract screening, there
were 277 articles that were potentially eligible for inclusion.
There were 11 titles and abstracts for which the full text could
not be located, potentially because they were published in print
only and we were unable to secure a hard copy (Supplemental
Table 4). Available articles were examined in full and 69
articles reporting on 66 studies were included in the systematic
review (Table 1) (18, 24–91). These articles included a total
of 4674 mothers with human-milk samples. Sixty-two studies
included term-born infants, while just 6 studies included a total
of 216 preterm infants (26, 35, 48–50, 63), which was deemed
insufficient for meta-regression based on the Cochrane Handbook
(section 9.6.4), which specifies that meta-regression analysis
should be considered only when there are a minimum of 10
studies (Supplemental Table 5) (92). Therefore, only studies
with term-born infants were included in the statistical analyses.

The mean BMI of the included studies of term-born infants
ranged from 17.8 to 35.3. Of the studies that included term-
born infants, there was 1 datapoint (1.4%) with a mean maternal
BMI within the underweight category, 46 datapoints (66.7%)
within the normal-weight category, 19 datapoints (27.5%) within
the overweight category, and 3 datapoints (4.3%) within the
obese category. For the studies that evaluated preterm infants, the
mean maternal BMI was between 20.7 and 26.4, with 4 studies
having a mean BMI in the normal-weight category (66.7%), 2
in the overweight category (33.3%), and none with a BMI in the
underweight or obese categories.

Forty datapoints (33 studies) were included in the meta-
regression of maternal BMI and human-milk energy, 63 data-
points (56 studies) in the analysis of maternal BMI and human-
milk fat, 40 datapoints (37 studies) in the analysis of maternal
BMI and human-milk total protein, and 20 datapoints (17
studies) in the analysis of maternal BMI and human-milk lactose
(Figure 1). Five studies were included as multiple datapoints for
the meta-regression analyses as they included data disaggregated
by maternal BMI category (18, 38, 51, 85, 89). Four of these
studies separated mothers into 2 BMI categories, whereas 1
included 4 different categories that were each discrete datapoints
(51).

Associations between maternal BMI and human-milk
energy, fat, and total protein: meta-regression results

Human-milk energy.

The meta-regression of the relation of maternal BMI
and human-milk energy from 40 datapoints (33 studies)
showed no significant association between these variables
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FIGURE 2 Meta-regression of the relation between maternal BMI and
human-milk energy. The bubble sizes in this meta-regression are proportional
to the inverse of the study-level SE for human-milk energy. The solid line
represents the linear prediction for the means of human-milk energy as a
function of the mean BMI observed at the study level (β: 3.9 kcal/L; 95%
CI: −1.6, 9.5; P = 0.16, I2 = 93.3%, n = 40 datapoints).

(β: 3.9 kcal/L; 95% CI: −1.6, 9.5; P = 0.16, I2 = 93.3%)
(Figure 2). These data met the assumptions for normality based
on the Q–Q plot (Supplemental Figure 1). Subgroup analyses to
ascertain whether quantification techniques (bomb calorimetry or
calculated), exclusive breastfeeding, complete breast expression,
24-h collection, BMI measured prepregnancy or postpartum,
study design, and country income level did not provide insight
into the source of the large heterogeneity (Supplemental
Table 6).

The subgroup meta-regression of the 9 datapoints (8 studies)
using bomb calorimetry showed no significant relation (β: 7.6
kcal/L; 95% CI: −21.3, 36.5; P = 0.55, I2 = 91.6%) nor did the
meta-regression of the 31 datapoints (25 studies) using calculated
energy (β: 4.1 kcal/L; 95% CI: −2.1, 10.2; P = 0.19, I2 = 93.9%).

Human-milk fat.

The meta-regression of maternal BMI and human-milk fat
from 63 datapoints (56 studies) showed that for each 1-kg/m2

higher BMI, human-milk fat was 0.56 g/L higher (95% CI: 0.034,
1.1; P = 0.04, I2 = 93.7%). Visual examination of the meta-
regression and the Q–Q plot suggests that the relation was linear
and met assumptions of normality, respectively (Figure 3 and
Supplemental Figure 2).

When including only the gravimetric method to quantitate fat
and excluding other techniques, there were 17 datapoints (16
studies) in this meta-regression. These showed a similar trend
between maternal BMI and human-milk fat, but the relation was
not significant (β: 0.84 g/L; 95% CI: −0.45, 2.1; P = 0.19, I2

= 93.6%). The subgroup analysis of 46 datapoints (40 studies)
using all other techniques also did not show a significant relation
between maternal BMI and human-milk fat (β: 0.44 g/L; 95%
CI: −0.17, 1.1; P = 0.15, I2 = 93.6%). There was a significant
positive relation between maternal BMI and human-milk fat for
the 34 datapoints (30 studies) that used gravimetric or infrared
spectrophotometry (β: 0.58 g/L; 95% CI: 0.016, 1.2; P = 0.04,
I2 = 90.0%). Other commonly used human-milk-fat techniques
were examined in meta-regression subgroup analyses and showed

FIGURE 3 Meta-regression of the relation between maternal BMI and
human-milk fat. The bubble sizes in this meta-regression are proportional to
the inverse of the study-level SE for human-milk fat. The solid line represents
the linear prediction for the means of human-milk fat as a function of the mean
BMI observed at the study level (β: 0.56 g/L; 95% CI: 0.034, 1.1; P = 0.04,
I2 = 93.7%, n = 63 datapoints).

similar trends to the primary meta-regression (Supplemental
Table 6). Additional subgroup analyses did not reveal any specific
source for the high I2 values in the meta-regression analyses.

Human-milk total protein.

There was no significant association between maternal BMI
and human-milk total protein based on the meta-regression of
40 datapoints (37 studies) (β: 0.13 g/L; 95% CI: −0.16, 0.41;
P = 0.37, I2 = 99.1%) (Figure 4). Examination of the Q–Q
plot suggests that the data met the assumptions of normality
(Supplemental Figure 3).

In subgroup analyses, including studies with only nitrogen
or amino acid analysis used to quantitate protein in the meta-
regression (16 datapoints, 15 studies), there was again no
significant association (β: 0.21 g/L; 95% CI: −0.31, 0.73; P

FIGURE 4 Meta-regression of the relation between maternal BMI and
human-milk total protein. The bubble sizes in this meta-regression are
proportional to the inverse of the study-level SE for human-milk total protein.
The solid line represents the linear prediction for the means of human-milk
total protein as a function of the mean BMI observed at the study level (β:
0.13 g/L; 95% CI: −0.16, 0.41; P = 0.37, I2 = 99.1%, n = 40 datapoints).
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= 0.40, I2 = 97.7%). The meta-regression of 24 datapoints
(22 studies) using other techniques also showed no significant
association (β: 0.20 g/L; 95% CI: −0.18, 0.58; P = 0.28,
I2 = 99.0%). Colorimetry and infrared spectrophotometry,
2 commonly used techniques to quantitate human-milk total
protein, were assessed in meta-regression subgroup analyses one
at a time in combination with nitrogen and amino acid analysis
(Supplemental Table 6). The association between maternal BMI
and total protein was not statistically significant in either of these
meta-regression analyses, although there was a trend towards
a positive relation when examining the 29 datapoints that used
nitrogen and amino acid analysis and colorimetry (β: 0.28 g/L;
95% CI: −0.041, 0.61; P = 0.084, I2 = 97.5%).

As with the subgroup analyses for maternal BMI and human-
milk energy and fat, respectively, exploration of subgroups
did not give insight into the sources of the high statistical
heterogeneity based on the I2 values.

Human-milk lactose.

An additional meta-regression of human-milk lactose, which
included 20 datapoints (17 studies), did not show a significant
relation between maternal BMI and lactose (β: −0.45 g/L; 95%
CI: −1.8, 0.88; P = 0.49, I2 = 99.6%) (Supplemental Figure 5).

Certainty of the evidence

The GRADE assessment indicated that the certainty of the
evidence for human-milk energy was low, whereas the certainty
of evidence for human-milk fat and total protein were very
low (Supplemental Table 7). The risk of bias was low for
all 3 of the outcomes examined. However, the quality of
the evidence scores for all 3 outcomes was downgraded as
there were limited studies including mothers with BMI in the
underweight and obese categories. Second, the evidence quality
score for all outcomes was downgraded due to high unexplained
heterogeneity in the meta-regression analyses for all 3 outcomes.
Finally, the certainty of the 3 outcomes was downgraded due
to differences in exclusivity of breastfeeding across studies,
the range of strategies used to collect human-milk samples,
including whether or not a complete breast expression was
performed, and different techniques used to quantitate human-
milk fat and total protein. Specifically, 36 studies out of 62 studies
(58.1%) including term-born infants stated that mothers were
exclusively breastfeeding. Thirty-four studies (54.8%) specified
that they collected fully expressed human milk. Sixteen studies
(25.8%) collected human milk over 24 h, which is the ideal
method for collecting human milk, particularly for human-milk
energy and fat analysis. However, subgroup analyses did not
show differences in statistical heterogeneity in relation to these
factors.

Discussion
Results from this systematic review showed a positive

association between maternal BMI and human-milk fat in term-
born infants between 1 and 6 mo postpartum. Specifically, the
meta-regression analysis of maternal BMI and human-milk fat in
the present systematic review (63 datapoints) suggests that every

1-kg/m2 increment in maternal BMI is associated with a 0.56-g/L
higher milk-fat concentration. Across a modest BMI difference
of 5 kg/m2 this translates to ∼7.2% higher human-milk fat. No
significant association was observed between maternal BMI and
human-milk energy or total protein.

Evidence for the significant association between maternal BMI
and human-milk fat was of very low quality, as assessed using
the GRADE approach, meaning that the certainty in these results
is highly limited. The certainty of the evidence for human-milk
energy and total protein was low and very low, respectively, using
the GRADE assessment (20). One of the reasons was that several
human-milk quantification techniques were used, particularly for
fat and total protein. However, subgroup analyses for each of
the 3 outcomes did not indicate that these methods explained the
considerable statistical heterogeneity.

Several years ago, Prentice et al. (93) in their summative
review examined the relation between average reported maternal
BMI and human-milk volume, energy, and fat composition in the
literature between 1980 and 1992 from countries of all income
levels. They reported that a number of original studies in the
literature found positive associations between maternal BMI and
human-milk fat but not energy, albeit acknowledged that other
studies reported no significant association or a negative associ-
ation between maternal BMI and human-milk fat. This review
did not consider the relation between maternal BMI and human-
milk protein. It is noteworthy that the highest mean BMI of
studies in the Prentice et al. review was below the BMI category
cutoff for overweight. In their recent systematic review, Leghi
et al. (6) examined original studies that tested the association
between maternal BMI and human-milk macronutrient content
and reported that mothers with overweight or obesity have higher
human-milk fat than normal-weight mothers based on a meta-
analysis of 6 studies; no difference was found in the association
between maternal adiposity and human-milk protein (n = 5
studies).

There was no significant relation between maternal BMI and
human-milk energy based on the meta-regression, similar to
the earlier findings by Prentice et al. Based on the positive
relation between maternal BMI and human-milk fat, it could be
hypothesized that energy would also be greater from mothers
with overweight or obesity since fat is the most energy dense
of the macronutrients and contributes ∼50% of milk energy
content (94–96). Additional original research studies are needed
to elucidate the simultaneous relations between maternal BMI
and human-milk energy and macronutrients.

Under normal circumstances, infants modify their consump-
tion to some degree based on the energy and macronutrient
composition of their enteral feeds (97). Regulation of volume
intake was first supported by the early controlled study by
Fomon et al (98). where term-born infants exhibited an early
capacity to regulate intake in response to the energy density
of formula provided. The association between macronutrient
concentration and volume intake has been reported by numerous
others in both formula-fed and breastfed infants subsequently
(97, 99–101). Whether infants are able to adjust the volume
of intake over the range of fat concentrations observed in the
present systematic review is unknown and is worthy of future
research. Understanding these associations in mothers across
the BMI spectrum is important as mothers with obesity often
have delayed lactogenesis and reduced exclusivity and duration
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of breastfeeding (97, 102). Beyond infancy, data pooled from
37 cohorts have shown that higher maternal prepregnancy BMI
is associated with overweight and obesity in children (103),
although it is unclear how human-milk energy and macronutrients
might mediate this relation. Other milk components, including
human-milk oligosaccharides and other bioactives, may also be
related to growth and require further exploration in relation to
maternal factors (104).

Limitations of this systematic review include the fact that
BMI does not differentiate between lean body mass and fat
mass and may not represent metabolic status precisely. BMI
was considered in mothers either before pregnancy or during
lactation, depending on available data, which may reduce the
precision of results. Only 6 studies reporting on human-milk
macronutrient composition from mothers of preterm infants met
the inclusion criteria and none of these had a mean maternal BMI
in the underweight or obese categories. We are therefore unable
to make conclusions about the associations between maternal
BMI and human-milk energy, fat, and/or total protein in this
population. Even among mothers of term-born infants, there was
a limited number of studies with women across the spectrum of
BMI, with just 1 study with a mean BMI in the underweight
category and 3 studies with a mean BMI in the obese category.
Furthermore, only the human-milk collection time point closest
to 3 mo was considered for each of the 21 studies that collected
human milk at multiple times. While there is variability in
human-milk composition for some nutrients over the first 6 mo
postpartum, and this conceivably may be impacted by maternal
BMI, a previous systematic review reported comparable human-
milk energy, protein, and fat between 1 and 6 mo postpartum
(105).

With regard to the statistical analysis, the variance in maternal
BMI as the predictor variable was not reflected in the meta-
regression. To account for this, for studies that categorized
mothers by >1 BMI category, these were included as separate
datapoints in the analyses; only 5 studies disaggregated the data
by BMI category. Further, given the limited number of studies
at the low and high end of the maternal BMI distribution, we
cannot be certain the relations between maternal BMI and human-
milk fat and total protein are linear; however, visual inspection of
the meta-regression suggests this is the case. That said, further
studies are needed to confirm the pattern of association between
maternal BMI and human-milk composition.

In conclusion, this systematic review showed a statistically
significant positive association between maternal BMI and
human-milk fat in term-born infants between 1 and 6 mo. No
significant associations were found between maternal BMI and
human-milk energy or total protein. This systematic review
further found the certainty of evidence for these findings was
low to very low. Future studies investigating the relation between
maternal nutritional status, variation in human-milk fat content,
and the implications for child growth and development are
required.
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